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1 Introduction

In economic theory, representative-agent models have traditionally been the cornerstone
of equilibrium analysis. These models assume that individuals’ heterogeneity does not
matter, since the aggregation of all agents yields an economy that can be thought of as
being inhabited by a single type of agent. While this abstraction offers several advantages,
including tractability and analytical solutions, macroeconomic literature has become
increasingly concerned with its shortcomings, particularly with its inability to replicate
crucial features of household distributions. This limitation has become especially apparent
given the growing availability of high-quality micro-data, which has allowed economists to
improve their theories and select sensible parameters for their models to match important
statistics observed in the real economy.

Consequently, in the past three decades, there has been a growing emphasis in economic
literature on developing and utilizing models which incorporate heterogeneous agents.
These models consider the influence of individual-specific factors, such as income, which are
typically determined by external shocks. By moving away from analyzing the decisions of a
single representative agent economists can capture the distributional effects arising from a
diverse set of consumers whose behavior varies based on their their individual states. This
approach enables economists to replicate various distributional characteristics observed
in household data, including wealth, income, and consumption patterns. By accounting
for the rich heterogeneity present in the data, the equilibrium analysis of these models
can differ drastically from the representative-agent approach. This not only provides
new insights into economic channels, but also improves the quantitative evaluation of
government policies, especially when looking at distributional outcomes such as various
dimensions of inequality.

Nowadays, there exist several different approaches for matching empirical moments
with quantitative models. The first choice involves the modelling of time which can
be formulated as being discrete or continuous. While the former is more common in
modern macroeconomics, there still exist notable studies which employ a continuous time
formulation. Luttmer (2007), for example, studies balanced growth that is consistent with
the observed size distribution of firms. Benhabib et al. (2011) analyze the dynamics of the
distribution of wealth, and Moll (2014) studies the effect of financial frictions on capital
misallocation. Also, the introduction of individual heterogeneity can be combined with
aggregate shocks that affect everyone. For example, Krusell and Smith (1998) consider
both idiosyncratic heterogeneity and movements in aggregate productivity to develop a
generalized stochastic growth model.

The focus of this thesis, however, is on models which employ a discrete time formulation
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without aggregate shocks. Among the seminal contributions to this strand of economic
literature was the introduction of a large number of agents who receive idiosyncratic income
shocks that are uninsured as in the models by Bewley (1987). Subsequent works by Hugget
(1993) and Aiyagari (1994) further expanded on the idea, and the class of models which
builds upon their contributions is now commonly known as a Bewley-Hugget-Aiyagari
(BHA) type economy. Models of this type have since been used to analyse a variety of
topics. Castañeda et al. (2003), for example, were able to almost exactly account for the
U.S. earnings and wealth inequality. Pijoan-Mas (2006) analysed the effects of longer
working hours and Conesa et al. (2009) provided a welfare analysis for an optimal tax on
capital and labor income. In other dimensions, Chatterjee et al. (2007) and Livshits et al.
(2007) introduced unsecured borrowing and equilibrium default to improve studies of the
credit market, while Quadrini (2000) investigated entrepreneurship.

Each of these studies uses equilibrium analysis to explore model dynamics and compare
outcomes. While some studies focus solely on steady-state mechanisms, others employ
counterfactual analyses to examine a range of scenarios and better understand the be-
havior of the model. Given the importance of these models in generating insights about
macroeconomic phenomena, it is crucial to understand their mathematical properties.
For example, the uniqueness and even existence of a general equilibrium are not always
guaranteed. Furthermore, the computation of an equilibrium, if it exists, often relies
on numerical solution methods and approximations of individual decisions. Since many
key conclusions drawn from quantitative macroeconomic models rely on these properties,
a sound mathematical characterization of BHA models is essential for interpreting the
results.

Consequently, the study of large dynamic economies has a long tradition in the
literature. Jovanovic and Rosenthal (1988), for example, present a sequential-game model
with a continuum of agents and establish some criteria for the existence of general and
stationary equilibria. Similarly, Stokey et al. (1989b) provide an overview of existing
results on stochastic dynamic programming problems. Furthermore, the characterization
of equilibrium properties has extended to studies of comparative statics which discuss how
equilibria respond to a change in fundamentals like shocks to preferences or production
parameters (e.g., Corchón, 1994; Acemoglu and Jensen, 2013). In particular, Acemoglu
and Jensen (2015) consider infinite-horizon economies populated by a continuum of agents
subject to idiosyncratic shocks. Hence, their results can be applied to a large set of
frameworks in the spirit of BHA models.

Despite significant progress in analyzing large dynamic economies, qualitative discus-
sions of model results in economics still frequently rely on strong assumptions, such as
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restricting shock distributions or functional forms. Therefore, economists typically use
numerical algorithms and approximations based on dynamic optimization to obtain more
general results. Early foundations for these algorithms can be found in the seminal work
by Bellman (1957). Also, the formulation of infinite-horizon models where discounting can
give rise to stationary solutions has proved especially influential (see, e.g., Blackwell, 1965).
However, the properties of numerical solutions are oftentimes not as well understood as
those of the approximated equilibria. This can not only lead to misleading results, but also
prove very problematic. Hatchondo et al. (2010), for example, provide a practical example
of how numerical errors can lead to spurious interest rate movements. Thus, Santos and
Peralta-Alva (2005) and Peralta-Alva and Santos (2014), among others, study accuracy
properties of simulations and numerical solutions of stochastic dynamic models. Similarly,
Kirkby (2017) discusses theoretical results on numerical error bounds. Also, the theory
developed in Kirkby (2019) provides sufficient conditions under which the solution to the
numerical algorithm converges to the true solution of the BHA model itself.

The aim of this lecture is to provide an overview of the most important results regarding
the theoretical and numerical characteristics of BHA models. The findings are mainly
based on the results presented in Acemoglu and Jensen (2015) and in the third chapter
of the PhD thesis by Kirkby (2014). The first is concerned with the existence of general
equilibria in the BHA class of models, and the latter establishes important properties for
the numerical algorithms which are used to compute these equilibria. The chapter from
Kirkby (2014) is the basis for Kirkby (2017, 2019) and here, we will mostly refer to one
of these papers instead of the thesis when citing a specific result, since they have been
published in peer reviewed journals.

2 Theoretical Properties of BHA Models

2.1 Illustrative Example

There are several features that can be found in a basic BHA-Model following the seminal
formulations in Bewley (1987), Hugget (1993) and Aiyagari (1994). To illustrate the basic
model ingredients, Aiyagari (1994) provides a good starting point. The model economy is
populated by a continuum of measure 1 of infinitely lived households who are endowed
with assets and have to decide on how much to consume and how much to save in every
period. The production of the consumption good takes place in a representative firm with
capital and labor supply as production inputs.
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The Individual’s Decision Problem. Individuals derive per-period utility from
consumption, u(c), where u(·) is the so-called utility function which satisfies some natural
assumptions2 and c the consumption level. Future utility flows are discounted at a rate
β ∈ (0, 1). The individual’s decision problem is to maximize their expected lifetime utility
given by

E0

{ ∞∑
t=0

βtu(ct)
}

. (2.1)

To finance their consumption streams, individuals provide labor to earn income and
can get a return on their savings. At any given period t, the amount of savings and
consumption of a given consumer has to be equal to their endowment in this period. Hence,
the optimization problem is subject to a budget constraint which has to hold every period:

ct + at+1 = wht + (1 + r)at, (2.2)

where ct, at and ht denote period t consumption, asset holdings and labor supply, and
w and r are the wage rate and the return on assets. Labor supply is assumed to follow
an idiosyncratic stochastic process whose realizations have a bounded support given by
[hmin, hmax], with hmin > 0.3 Note that at could be negative at any given period, indicating
that the household is borrowing to smooth consumption. However, there exists a borrowing
limit, b, and we impose the natural restriction that consumption should be strictly positive
in every period, i.e. ∀t ∈ N0 : ct > 0.

Combining all these ingredients, the individual optimization problem can be specified
as

max E0

{ ∞∑
t=0

βtu(ct)
}

subject to

ct + at+1 = wht + (1 + r)at,

ct ≥ 0, at ≥ −b almost surely (a.s).

(2.3)

Aggregation. We can see that the individual decision problem is ex-ante identical for all
households. However, during their life-time, different realizations of the labor supply h will
lead to diverging paths. Since we have a continuum of agents, a law of large numbers for

2In the standard cases, the function will be differentiable, monotonically increasing, and concave.
3This represents the idiosyncratic shocks mentioned in the introduction. Ex-ante all households are

identical but during their life-time they might experience different shock histories which will lead to
different decisions and potentially vastly differing asset holding.
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Figure 1: Illustration of model mechanisms

stochastic processes will provide us with a measure of realizations of h for every period t.
Using this measure we can aggregate all the individual decisions to compute the aggregate
savings in the economy, At. For example, let the possible states be denoted by the set S

and let µt be the measure over states for period t. Then, aggregate savings in period t are
given by

At =
∫

S
at(s) µt(ds)

Similarly, we can calculate aggregate consumption, Ct, and aggregate labor supply, Lt.
These aggregates are important in characterizing the equilibrium of the model as discussed
in Section 2.2.

Production. In every period, the consumption good is produced using total labor supply,
Lt, and capital, Kt. Let the production function be denoted by F (Kt, Lt). Then, the
aggregate budget constraint of the economy is given by

Ct + Kt+1 = F (Kt, Lt) − wLt − rKt, (2.4)

where the rental rate of capital, r, is the same as the return on household savings. The
demand for capital is determined by profit maximization and yields the first-order condition
r = δF (Kt, Lt)/δKt. Hence, for any given rate of return r the capital demand from the
production side of the economy might differ from aggregate savings of the households. In
equilibrium, however, we have Kt = At.4

Illustration. Figure 1 illustrates some of the mechanisms of the model solution. The
parameterization used for creating this figures are described in appendix C. Part 1a displays

4See Section 2.2 for the definition of an equilibrium.
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the total assets held by households and the capital demand of the production sector as a
function of the interest rate r. The plot reveals an inverse relationship between capital
demand and asset holdings, where higher interest rates lead to increased asset holdings
but decreased capital demand. Naturally, higher returns on savings induce consumers to
increase their assets, while higher prices for renting capital induces firms to reduce their
demand. Notably, even without discussing the equilibrium of the economy, the plot clearly
shows a unique level of r at which capital demand equals asset holdings.

Part 1b presents an example of a policy function for a household with median labor
endowment. For any given period, the optimal decision for next period’s savings will
depend on the current state. This is represented by a policy function. In this case, the
optimal consumption decision is linear with respect to current asset holdings (keeping
fixed the labor supply and thereby income).

2.2 Characterizing BHA-Models

The example above already shows some of the basic ingredients of BHA-Models. For the
subsequent analyses of the characteristics of these kinds of models it is convenient to
provide a general definition. First, however, we need to introduce the notion of Markov
processes which govern the exogenous shocks in BHA-Models.

Definition 2.1 (Markov Process). Let (Z, Z) be a measurable space. A transition function
is a mapping Pz : Z × Z → [0, 1] such that

(i). For each z ∈ Z, Pz(z, ·) is a probability measure on (Z, Z).

(ii). For each A ∈ B(Z), Pz(·, A) is a Z-measurable function.

A Markov process is a stochastic process on (Z, Z) whose state next period evolves
according to Pz.

Remark. The interpretation of a Markov process is that Pz(a, A) provides the probability
that next period’s shock zt+1 lies in the set A given that the current shock was a, i.e.:

Pz(a, A) = Pr
(
zt+1 ∈ A|zt = a

)
Note that this formulation means that next period’s state only depends on current
realizations while being independent of the history of the shock. This property of being a
’memoryless’ process is called the Markov property and is usually used together with the
notion of filtrations to define a Markov process in a formal mathematical sense.
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Also, for any Z-measurable function f we can define the operator

(Tf)(z) =
∫

f(z′) Pz(z, dz′),

and interpret (Tf)(z) as the expected value of f next period given that current period’s
realization is z, i.e.: E[f(zt+1) | zt = z].

Since BHA models simulate dynamic forward-looking decision making, we are often
interested in the distribution over the drawn shocks at any given period. In particular, we
are often interested in how the shock distribution evolves from one period to another and
if there might be cases in which it stays the same.

Definition 2.2 (Invariant Distribution). Let Pz be the transition function of a Markov
process on the measurable space (Z, Z). For any probability measure λ ∈ P(Z) and A ∈ Z
we can define T ∗λ by

(T ∗λ)(A) =
∫

Pz(z, A)λ(dz)

T ∗ is called the adjoint Markov operator and we can interpret (T ∗λ)(A) as the probability
that the shock next period will be in the set A if the current realization is drawn from the
distribution λ.

We call µz ∈ P(Z) an invariant distribution for the transition function Pz if T ∗µz = µz.

Remark. Intuitively, an invariant distribution leads to a situation in which the measure
over states is constant over time, because in every period current realizations are drawn
from the same distribution µz.

In BHA-Models consumers are hit by idiosyncratic shocks which are governed by a
Markov process with a unique invariant distribution. This allows us to model consumers
which behave differently even though they are ex-ante homogeneous. Heterogeneous
behavior is now the result of different shock histories. The following definition provides
a formal mathematical characterization of BHA models and mostly follows the notation
from Acemoglu and Jensen (2015).

Definition 2.3 (BHA-Model). We have an infinite-horizon, discrete-time economy pop-
ulated by a continuum of agents I = [0, 1] endowed with the Lebesgue measure. Each
agent i ∈ [0, 1] is subject to uninsurable idiosyncratic shocks zi,t ∈ Z ⊆ Rk that follow
a Markov process with transition function Pz and have a unique invariant distribution
µz. Let X ⊆ Rl be an endogenous state variable. Then the state of an agent can be
summarized as si = (xi, zi) ∈ X × Z. Also, let Qt ∈ Q ⊆ Rq be an aggregate state at time
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t.5 Given initial conditions si,0 = (xi,0, zi,0), the agent solves

sup E0

{ ∞∑
t=0

βtR(xi,t, xi,t+1, zi,t)
}

subject to xi,t+1 ∈ Γ(xi,t, zi,t; Qt), t = 0, 1, 2, . . .

(2.5)

where β ∈ (0, 1) is the discount factor, Γ : X × Z → 2X the constraint correspondence
and R : X2 × Z → R the one-period return function.

Example 2.1. This definition might seem very abstract, but the notation becomes clear
when translating it to the economy from Aiyagari (1994) described above. Here, the
endogenous variable and the exogenous shock are one-dimensional, i.e. k = l = 1. The
endogenous state variable (x) are asset holdings, a, which are determined by individual
decisions. The exogenous state variable (z) is stochastic labor supply, h, which cannot
be influenced by the consumer and is taken as given every period. Hence, the state of an
agent consists of current asset holdings and the realization of the exogenous labor supply
shock, which is the pair (a, h). The correspondence constraint is the admissible set of the
budget constrained defined in (2.2). To see this, solve for consumption, ci,t, in terms of
savings, ai,t+1:

ci,t = whi,t +
(
1 + r

)
ai,t − ai,t+1,

and since we restrict the analysis to positive consumption levels, we get the constraint:

Γ(ai,t, hi,t; Qt) =
{

ai,t+1 ∈ [−b, ∞) : ai,t+1 ≤ whi,t +
(
1 + r

)
ai,t,

w = w(Qt), r = r(Qt)
}

,

where we have signified that the wage rate and the interest rate will depend on the market
aggregates (in this example, the profit maximization of the firm). With the same argument
we can define the one-period return function when individuals only care about consumption
by

R(ai,t, ai,t+1, hi,t) = u
(
whi,t +

(
1 + r

)
ai,t − ai,t+1

)
,

with u(·) being the instantaneous utility from consumption. Finally, the market aggregates
are given by the capital and labor supply, Qt = (Kt, Lt), and determine the wage rate
and the interest rate. With competitive markets, prices of inputs will be equal to their
marginal products. Hence, r = δF (Kt, Lt)/δKt and w = δF (Kt, Lt)/δLt, with F (·, ·)
being a continuous production function.

5For example, Qt could entail aggregate capital demand of the production sector, total labor supply
in the economy, government consumption, etc.
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In general, the solution to the problem in (2.5) from the point of view of an agent is a
sequence of optimal response functions for any state st, because the agent realizes that
the optimal decision will depend on the realization of the state st at every point in time.
Hence, at time t = 0 we start with a known realization of the current state s0 = (x0, z0),
with x0 being the initial endogenous state variable and z0 the initial realization of the
exogenous shocks.6 Knowing this initial state s0, the agent makes a decision about x1.
However, the decision about x2 will depend on z1 which is a random variable. Hence, the
agent will make contingency plans for the periods t = 1, 2, . . . , which map the possible
realizations of zt to actual decisions. These contingency plans might be very complicated,
but they have to satisfy certain restrictions in order for the optimization problem to be
well posed. This observation gives rise to the following definition of individual strategies:

Definition 2.4 (Strategies). A strategy a = (a0, a1, a2, . . . ) is a value a0 ∈ X and a
sequence of measurable functions at : Zt → X for t ≥ 1. We say a strategy is feasible
if it satisfies the restriction in (2.5), and it is optimal if it solves the problem in (2.5).
An optimal strategy is denoted by a∗. We will denote with zt = (z0, z1, . . . , zt) ∈ Zt the
partial history of shocks up until period t and write at(zt) for the value xt+1 that is chosen
in period t when zt is observed.

Remark. Note that the optimal strategy for the problem in (2.5) cannot simply be
constructed pointwise by only looking at the periods which are affected by the choice
xi,t+1. We have

R(xi,t, xi,t+1, zi,t) + βR(xi,t+1, xi,t+2, zi,t+1),

and the optimal xi,t+1 for this expression depends on the future shock zi,t+1.

With this notation of strategies, we also get a corresponding sequence of distributions
over the endogenous state X. For each agent i ∈ I, the function ai,t maps the random
shocks zt into possible choices for the endogenous variable xt+1 and thus, it yields a
probability distribution µai,t

∈ P(X) on X. In particular, for any subset A ⊆ X, we have

µai,t
(A) = P

(
{zt ∈ Zt : ai,t(zt) ∈ A}

)
, (2.6)

that is the probability of choosing the value xi,t+1 ∈ A based on the strategy ai.
It is clear that the solution of a BHA model consists of optimal strategies (a∗

i )i∈I .
However, such a solution will not exist in general. For example, if we allow any arbitrary

6In the case of the model above, such an initial state would be current asset holdings and initial
labor endowment. For example, we could think about new workers entering the model with initial state
s0 = (0, 1), meaning that they start their model life with 0 assets and the median labor endowment.
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return function R, the maximization problem might be undefined. Hence, we need to
impose some restrictions on the model components to ensure the existence of a unique
solution to the individual optimization problem.

Assumption 2.1. The transition function Pz has the Feller property7, X and Z are
compact, R is bounded and continuous, and Γ is continuous with nonempty and compact
values.

Lemma 2.1. With Assumption 2.1 the set of feasible strategies is nonempty for all initial
conditions si,0 and for all i ∈ I. In particular, an optimal strategy a∗ exists.

The proof of this lemma can be found in appendix A. Note that Assumption 2.1 is not
very restrictive, as it will usually be satisfied by simply imposing some natural conditions
on the economic parameters. In Aiyagari (1994), for example, employing a continuous
production function already results in a compact constraint correspondence. Moreover,
the assumptions of compactness for the state variables X and Z come about naturally,
since they represent asset holdings and labor supply, both of which should be chosen
from compact sets. Hence, only the Feller property of the transition function Pz is a real
restriction. However, it is still fulfilled by most of the stochastic processes currently used
in economic modelling.

In Example 2.1 we can see that the feasible strategies of agents depends on the wage
rate and the interest rate, both of which are determined by the aggregate state. However,
the agents’ strategies can also be aggregated by mapping random variables (the strategies
of the agents) into real numbers.

Definition 2.5 (Aggregator). An aggregator is a continuous and increasing function A
that maps the agents’ strategies at time t into a real vector Qt ⊆ Q. The value

Qt = A
(

(ai,t)i∈I

)
(2.7)

is called the market aggregate at time t. Continuity is assumed with regards to the
weak-*-topology8 on the domain of A, and A is said to be increasing if A(x1) ≥ A(x2) for
all random variables x1 and x2 such that x1 stochastically dominates x2.

Remark. The aggregator cancels out individual uncertainty in the sense that it does not
depend on any realization of the shock history, but only on the strategies themselves.

7A Markov operator is said to have the Feller property if it maps the set of bounded continuous
functions into itself

8The weak-*-topology is the coarsest topology under which all the linear functionals on the dual space
are continuous.
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Since the shocks are independent between individuals, with a law of large numbers for
a continuum of agents as in Uhlig (1996) the transition function Pz(z, dz) yields the
deterministic fraction of the population that transitions from z to dz.

2.3 Sequential Equilibrium

In Figure 1a above we have already seen that the aggregate state will generally not be
equal to the aggregation of individual actions for any possible strategy. There was only
one value for capital demand such that the aggregation of individual strategies yields the
same amount of savings. However, for a meaningful analysis the capital that is needed
in production has to be equal to the available capital in the economy. Otherwise capital
would simple be destroyed (in the case of excess supply), or created from nothing (in
the case of excess demand). Hence, economists restrict their analyses to the equilibrium
of a model. Following Acemoglu and Jensen (2015), the equilibrium of a BHA model
as described in Definition 2.3 is given by a specific sequence of market aggregates and
strategies:

Definition 2.6 (Sequential Equilibrium). For given initial conditions (si,0)i∈I a sequential
equilibrium is a sequence of market aggregates and individual strategies,

{
Q∗, (a∗

i )i∈I

}
,

such that the following conditions hold:

(i). Optimality: For each agent i ∈ I, a∗
i = (a∗

i,0, a∗
i,1, a∗

i,2, . . . ) solves the optimization
problem in (2.5) given Q∗ = (Q∗

0, Q∗
1, Q∗

2, . . . ) and the initial conditions (si,0)i∈I .
This means:

∀i ∈ I : a∗
i = arg sup

ai∈ℵi(si,0;Q∗)
R(xi,0, ai,0(zi,0), zi,0) +

E0

{ ∞∑
t=1

βtR(ai,t−1(zt−1
i ), ai,t(zt

i), zi,t)
}

,

with ℵi(si,0; Q∗) being the set of feasible strategies for agent i starting from si,0 and
given Q∗.

(ii). Market Clearing: ∀t ∈ N0 : Q∗
t = A

(
(a∗

i,t)i∈I

)
, meaning that market aggregates are

determined by individual actions.

The intuition of point (i) is straightforward: it simply states that in equilibrium all
agents follow their optimal strategies. Point (ii) states that the aggregation of these
individual strategies should be equal to the market aggregates that induce these strategies
in the first place. In the example economy described above, this condition means that the
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interest rate induced by the capital demand of the firm should lead to savings decisions of
the households that, when aggregated, exactly satisfy this demand. In other words, the
condition implies that there is no excess demand or supply of capital, meaning that the
capital market is cleared.

The existence of an equilibrium in the market heavily depends on the characteristics
of the market aggregation. Specifically, for an equilibrium to exist as defined earlier, it
is essential that the aggregator A maps all permissible subsets to convex images. If this
requirement is not met, there may not be an equilibrium. Rather than mandating a
particular aggregator with these desired features, we adopt an assumption proposed by
Acemoglu and Jensen (2015) regarding the agents’ problem in cases where the convexifying
characteristic is absent.

Assumption 2.2. At least one of the following two conditions holds:

(i). The aggregation function A is convexifying; that is, for any subset B of the set of
joint strategies such that A(b) is well defined for all b ∈ B, the image A(B) ⊆ Q is
convex.

(ii). X is convex, and given any choice of zi and Q, the return function R(xi, yi, zi) is
concave in (xi, yi) and Γ(xi, yi, zi; Q) has a convex graph for each agent i.

Theorem 2.2 (Existence of Equilibrium). Under Assumptions 2.1 and 2.2 there exists an
equilibrium for any choice of initial conditions (si,0)i∈I.

Proof. For agent i let ℵi(si, Q) denote the set of feasible strategies (which are infinite
sequences of random variables) and γi(Q) ⊆ ℵi(si, Q) the set of optimal strategies given
the sequence of aggregates Q ∈ QN. With Assumption 2.1 and Lemma 2.1, γ : QN → 2ℵ

will be non–empty valued and upper hemicontinuous. Consider the upper hemicontinuous
correspondence A(Q) = {A((ai)i∈I) : ai ∈ γi(Q) for i ∈ I}. If we can apply the Kakutani-
Glicksberg-Fan fixed-point theorem for infinite-dimensional locally convex topological
vector spaces (see Theorem B15 in Appendix B), the existence of a Q∗ as in Definition 2.6
follows immediately.

We can see that A(Q) will be non-empty and upper hemicontinuous. Furthermore,
with Assumption 2.2 A(Q) will also be compact and convex valued for all Q. Consequently,
A : QN → 2QN is a Kakutani map and QN with the supremum norm ∥Q∥∞ = supt |Qt|
is a convex and compact topological space. Thus, the Kakutani-Glicksberg-Fan theorem
applies and A has a fixed point, i.e.:

∃Q∗ : Q∗ ∈ A(Q∗).

12



This fixed-point Q∗ is a sequence of market aggregates with associated strategies
(
a∗

i ∈

γi(Q∗)
)

i∈I
that satisfies Definition 2.6. Hence,

{
Q∗, (a∗

i )i∈I

}
is an equilibrium outcome.

2.4 The Principle of Optimality

In a sequential equilibrium as discussed above, the equilibrium outcome may vary between
each period, which can be problematic in economic analyses. As a result, economists often
focus on stationary equilibria, where the market aggregate remains constant across periods.
In other words, we seek to identify equilibria that correspond to a constant sequence
of aggregate states Q = {Q, Q, . . . }. By doing so, economists can better analyze the
long-term behavior of markets and make more accurate predictions about future outcomes.

Before extending our discussion to these special kind of equilibrium, however, it will
prove convenient to first introduce the notion of value functions and policy correspondences.
To do so, let’s look again at the individual’s optimization problem:

sup E0

{ ∞∑
t=0

βtR(xi,t, xi,t+1, zi,t)
}

subject to xi,t+1 ∈ Γ(xi,t, zi,t; Qt), t = 0, 1, 2, . . .

(2.8)

Now, since we are interested in stationary outcomes, we will assume that Q is constant
and fixed at a given value Q. Let ℵi(si,0; Q) denote the set of feasible strategies for agent
i with initial conditions si,0 = (xi,0, zi,0) and the given market aggregate Q. As shown
above, under Assumptions 2.1 and 2.2 this problem has a solution. We now write this
solution as a function v∗ : X × Z → R, defined as

v∗(xi,0, zi,0; Q) = sup
ai∈ℵi(si,0;Q)

R(xi,0, ai,0(zi,0), zi,0) +

E0

{ ∞∑
t=1

βtR
(

ai,t−1(zt−1
i ), ai,t(zt

i), zi,t

)} (2.9)

We call v∗ the value function corresponding to the dynamic optimization problem in
(2.8). The computation of this function v∗ might not be straightforward and it would be
convenient, if we could rewrite the problem in a functional relationship. Such a functional
relationship could look as follows:

v(x, z; Q) = sup
y∈Γ(x,z;Q)

{
R(x, y, z) + βE

[
v(y, z′; Q)

]}
, (2.10)

where z is the current value of the exogenous shock, while z′ is the respective value next
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period. The expectation is formed with respect to the realizations of z′. If there exists a
function v satisfying the functional relationship in (2.10), then we can also formulate the
associated policy correspondence:

G(x, z; Q) =
{

y ∈ Γ(x, z; Q) :

v(x, z; Q) = R(x, y, z) + βE
[
v(y, z′; Q)

]} (2.11)

In the deterministic case (if the process zt is deterministic), it can easily be shown that if
the supremum function v∗ in (2.9) is well-defined, it also satisfies the functional relationship
in (2.10). Conversely, the solution to (2.10) is the supremum function. However, in a
stochastic setting, the function v∗ may not be measurable, making the expectation operation
in the functional equation undefined. This issue is not just theoretical as demonstrated by
an example constructed by Blackwell (1965) which shows that these measurability issues
can arise even in simple settings. Therefore, we must limit our analysis to cases where
certain criteria are met to get the following result as in Stokey et al. (1989b):

Theorem 2.3. Let Assumptions 2.1 – 2.2 hold, and let v∗ be defined as in (2.9). Let v be
a measurable function satisfying the functional relationship given in (2.10), such that for
all initial conditions si,0 = (xi,0, zi,0) ∈ X × Z and all strategies ai ∈ ℵi(si,0; Q), given the
aggregate state Q, we have

lim
t→∞

E
{
βtv(ai,t−1(zt−1

i ), zi,t; Q)
}

= 0. (2.12)

Let G be the associated policy correspondence defined in (2.11), and assume that G is
non-empty and permits a measurable selection. Then v = v∗ and any strategy ai generated
by G attains the supremum in (2.9).

Proof. For the sake of simplicity, we will omit the subscript i in the following proof, but
note that we are still referring to the optimization problem of a particular agent.

Let’s define a sequence of functions Un : ℵ(s0; Q) → R by

U0(a, s0; Q) = R(x0, a0, z0)

Un(a, s0; Q) = R(x0, a0, z0) + E
{

n∑
t=1

βtR(at−1(zt−1), at(zt), zt)
}

Then we can define U(a, s0; Q) = limn→∞ Un(a, s0; Q) and have v∗ = supa∈ℵ U(a, s0; Q).
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Under Assumptions 2.1 and 2.2, v∗ is well-defined and the unique function satisfying:

v∗(s0; Q) ≥ U(a, s0; Q) for all a ∈ ℵ(s0; Q) (2.13)

v∗(s0; Q) = lim
k→∞

U(ak, s0; Q) for some {ak}∞
k=1 ∈ ℵ(s0; Q) (2.14)

Suppose v is a function satisfying the assumptions stated in Theorem 2.3 and the functional
relationship (2.10). If we can show that v also satisfies conditions (2.13) and (2.14), then
it follows that v = v∗.

Step 1: For any a ∈ ℵ(s0; Q) we have

v(s0; Q) = sup
y∈Γ(s0;Q)

{
R(x0, y, z0) + βE

[
v(y, z1; Q)

]}

≥ R(x0, a0, z0) + βE
[
v(a0, z1; Q)

]
= U0(a, s0; Q) + βE

[
v(a0, z1; Q)

]

= U0(a, s0; Q) + βE
[

sup
y∈Γ(a0,z1;Q)

{
R(a0, y, z1) + βE

[
v(y, z2; Q)

]}]

≥ U0(a, s0; Q) + βE
[
R(a0, a1(z1), z1) + βE

[
v(a1(z1), z2; Q)

]]

= U1(a, s0; Q) + β2E
[
v(a1(z1), z2; Q)

]
,

where we have simply used the definitions of U0 and U1 and the fact that v satisfies the
functional relationship in (2.10). By induction, for n ≥ 1 we get:

v(s0; Q) ≥ Un(a, s0) + βn+1E
[
v(an(zn), zn+1; Q)

]
.

Using (2.12) yields

v(s0, Q) ≥ lim
n→∞

Un(a, s0; Q) + 0 = U(a, s0; Q),

and since a ∈ ℵ(s0) was arbitrary, the function v satisfies (2.13).

Step 2: Since G permits a measurable selection and is non-empty, there exists a sequence
g = (g0, g1, . . . ) of measurable selections from G. We define

a∗
0 = g0(s0)

a∗
t (zt) = gt(a∗

t−1(zt−1), zt), zt ∈ Zt, t = 1, 2, . . .
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Since the sequence a∗ = (a∗
0, a∗

1, . . . ) is generated by a composition of measurable functions,
a∗ is a strategy. Furthermore, since gt(s) ∈ G(s; Q) ⊆ Γ(s; Q), a∗ is feasible and due to
the definition of G we can repeat the argument in step 1 with equality in every line. Hence,
the function v satisfies (2.14) with ak = a∗ for all k.

Together, step 1 and step 2 imply v(s0) = v∗(s0) and since s0 was arbitrary, v = v∗.

This theorem tells us, that v is a solution to the individual’s maximization problem
if v solves the functional relationship in (2.10). With this result we have a way to write
a sequential problem as in (2.8) as a functional relationship in which we can find the
unknown function v in order to solve the optimization. Note, however, that Theorem 2.3
only states that any strategy generated by the policy correspondence G will attain the
supremum and thus be optimal. Nonetheless, not every optimal strategy must necessarily
be induced by G.

Definition 2.7 (Policy Function). For any given state s ∈ S and a given aggregate state
Q, we call the measurable selection g(s) ∈ G(s; Q) the policy function for an agent in state
s.

Remark. The policy function provides the optimal decision for an agent whose current
state is given by s ∈ S. Since the state space is the same for all agents (S = X × Z for
all i ∈ I), the value function and its associated policy function are also the same for all
agents. Hence, if we know the distribution of agents over states, the policy function will
yield a distribution over endogenous decisions.

With this notion of value functions and policy functions we are able to detach the
solution of the optimization problem from a specific sequence of periods. Instead, we can
characterize the optimal decisions of agents for any given current state, independent of
the specific history that led to this state. Therefore, to solve the sequential problem in
(2.8) we can write it recursively as

v(x, z; Q) = sup
y∈Γ(x,z;Q)

{
R(x, y, z) + βE

[
v(y, z′; Q)

]}
,

where we adopt the common notation that next period’s values are denoted with a prime,
z → z′. Theorem 2.3 tells us that the unique solution v∗ to this functional equation will
solve the dynamic optimization problem, and the optimal strategies will be generated
by the associated policy correspondence as defined in (2.11). This result constitutes the
so-called principle of optimality as described by Bellman (1957).
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2.5 Stationary Equilibria

For the evaluation of policies and the exploration of economic mechanisms it is often
inconvenient to look at a sequential equilibrium as in Definition 2.6. With strategies and
market aggregates being dependent on the periods t, the effects of economic channels
might only be present during certain points in time or while converging to infinity. Hence,
economists usually focus on so-called stationary equilibria, in which the market aggregates
do not change between periods. These equilibria are particularly useful when studying
counterfactual economies or comparing the effects of different policies.

Before providing the definition of a stationary equilibrium, we need to establish the
notion of stationary strategies. Remember that the measurable functions ai,t of a strategy
ai give rise to a probability distribution µai,t

over X as in (2.6).

Definition 2.8 (Stationary Strategies). A strategy ai is called stationary, if for any
two periods t1, t2 ∈ N, ai,t1 and ai,t2 yield the same distribution, i.e. µai,t1

= µai,t2
on(

X, B(X)
)
. We say, ai generates the stationary probability distribution µai

.

Definition 2.9 (Stationary Equilibrium). A stationary equilibrium is a constant sequence
of aggregate states and a sequence of stationary strategies,

{
Q∗, (a∗

i )i∈I

}
, such that the

following conditions hold:

(i). Optimality: For each agent i ∈ I, the stationary strategy a∗
i = (a∗

i,1, a∗
i,2, a∗

i,3, . . . )
with stationary distribution µa∗

i
solves the optimization problem in (2.5) given the

constant sequence of aggregate states Q∗ = (Q∗, Q∗, Q∗, . . . ) and the randomly drawn
initial conditions (xi,0, zi,0) ∼ µa∗

i
× µz.

(ii). Market Clearing: ∀t ∈ N0 : Q∗ = A
(

(a∗
i,t)i∈I

)
, meaning that the aggregate state is

equal to the market aggregate of individual actions.

Remark. Optimality in the above definition refers to a solution of the problem in (2.5).
Hence, given the constant sequence Q∗, a∗

i is optimal among all strategies, not only
stationary strategies. Also, when drawing the initial conditions, xi,0 and zi,0 are assumed
to be independent. Lastly, note that the market clearing condition is the same as for a
sequential equilibrium, with the only exception that the market aggregate of individual
actions is the same for every period t. In particular, every stationary equilibrium is also a
sequential equilibrium with constant aggregate states.

The intuition behind this definition is that in a stationary equilibrium the actions
of individuals lead to the same aggregate economic outcomes every period, regardless
of the specific shocks that may occur. While individual actions may still vary from one
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period to another in response to different shocks, the distribution of possible actions
remains constant over time. This means that, on average, the fraction of the population
transitioning into and out of specific states always balances out every period. This can be
explained using a law of large numbers for a continuum of agents as in Uhlig (1996).

Example 2.2. Consider again the Aiyagari (1994) economy from Section 2.1. In Figure 1a
we have seen that for different interest rates the aggregate savings decisions of the agents
might diverge from the capital demand of firms. However, at an interest rate of roughly
1.2% both aggregates coincide. A stationary equilibrium now describes a situation in
which the interest rate is equal to 1.2% in every period and thus, every period the market
aggregate and the aggregation of individual savings decisions will coincide and be constant
over time.

To ensure the existence of such a stationary distribution, we first introduce the notion
of a lattice and supermodular function and then impose additional restrictions on our
optimization problem.

Definition 2.10. Let A and B be partially ordered sets, Γ : A×B → 2A a correspondence,
and f : A × B → R a mapping. Denote with a1 ∨ a2 the supremum and with a1 ∧ a2 the
infinum of the two-element subset {a1, a2}. We say

• A is a lattice if for any two-element subset {a1, a2} ⊆ A both a1 ∨ a2 ∈ A and
a1 ∧ a2 ∈ A.

• for fixed b, the graph of Γ is a sub-lattice of A × A if c1 ∈ Γ(a1) and c2 ∈ Γ(a2)
implies that c1 ∨ c2 ∈ Γ(a1 ∨ a2) and c1 ∧ c2 ∈ Γ(a1 ∧ a2).

• the function f is supermodular in (a, b) if

f(a1 ∨ a2, b1 ∨ b2) + f(a1 ∧ a2, b1 ∧ b2) ≥ f(a1, b1) + f(a2, b2)

Assumption 2.3. The set of endogenous variables X is a lattice. Also, given any choice
of zi, the one-period return function R(xi, yi, zi) is supermodular in (xi, yi) and the graph
Γ(xi, zi; Q) is a sublattice of X × X for any choice of zi and Q.

The restrictions imposed in Assumption 2.3 are again not very strong as they are
commonly satisfied in typical economic applications. For example, the graph of Γ will be
a sub-lattice if Γ is ascending in x, meaning that for x2 ≥ x1, y1 ∈ Γ(x1) and y2 ∈ Γ(x2)
implies that y1 ∨ y2 ∈ Γ(x2) and y1 ∧ y2 ∈ Γ(x1). Intuitively, this can be interpreted in
the sense that a higher endogenous state today allows a higher endogenous state next
period, which is a natural requirement for economic actions. Similarly, in most economic
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settings, supermodularity of the return function is already fulfilled by using a concave
utility functon.9

With Assumption 2.3 we get additional structure for our policy correspondence which
will translate to the operator that we are going use to find an invariant distribution.

Lemma 2.4. With Assumptions 2.1 and 2.3 the policy correspondence G : X × Z → 2X

as defined in (2.11) will be ascending in x for any fixed value of z.

Intuitively, Lemma 2.4 tells us that the decision about next period’s endogenous state
is increasing in the current value. For example, higher asset holdings today would induce
higher savings tomorrow. The proof of the lemma can be found in Appendix A.

Now, for any agent i and a fixed aggregate state Q, the policy correspondence Gi

obtained from the optimal strategy is

Gi(xi, zi; Q) =
{

yi ∈ Γ(xi, zi; Q) : v∗
i (xi, zi; Q) = R(xi, yi, zi) + βE

[
v∗

i (yi, z′
i; Q)

]}
,

where v∗ denotes the the value function solving the functional relationship in (2.10). With
Lemma 2.4 we know that this correspondence will be ascending in x. We denote with gi a
measurable selection from Gi (the policy function associated with the optimal strategy).
With µz being the invariant distribution of the Markov process for the exogenous shock
we can define a transition function for the endogenous state, Pgi,Q : X × B(X) → [0, 1], by

Pgi,Q(xi,t, A) ≡ µz({zi,t ∈ Z : gi(xi,t, zi,t; Q) ∈ A}), (2.15)

where A ∈ B(X). This transition function tells us the probability of choosing next period’s
value from the set A if the current value is xi,t. However, the current value has already
been decided last period depending on the realization of the exogenous shock. Hence, we
would like to find a formulation that provides us with a probability measure µt+1 ∈ P(X)
given that current period’s values have been chosen according to the probability measure
µt.

Definition 2.11 (Adjoint Markov Operator). For any agent i ∈ I, let Pgi,Q denote the
transition function for the endogenous state X based on the optimal decision rule gi and
the aggregate state Q as defined in (2.15). For any probability measure µ ∈ P(X) define
the operator T ∗

gi,Q
by

T ∗
gi,Q

µ =
∫

Pgi,Q(x, ·)µ(dx). (2.16)

9For example, with R(x, y, z) = u(wz + (1 + r)x − y) as in the Aiyagari economy in Example 2.1, we
get D2

xyu = −(1 + r)u′′ ≥ 0 if u′′ ≤ 0, and since D2
xy ≥ 0 implies supermodularity, a concave function u

satisifies Assumption 2.3.
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We call T ∗
gi,Q

the adjoint Markov operator for the associated transition function Pgi,Q.

We can interpret T ∗
gi,Q

µ(A) as the probability that the endogenous variable will lie in
the set A next period given that the current state is drawn from the probability distribution
µ. In other words, for any probability measure µt over the endogenous state at time
t, µt+1 = T ∗

gi,Q
µt is the probability measure over the endogenous state in period t + 1.

Hence, for any agent i the measure µ∗
i is associated with a stationary strategy for a given

aggregate state Q if and only if µ∗
i is a fixed point of T ∗

gi,Q
, i.e. µ∗

i = T ∗
gi,Q

µ∗
i . If such a

stationary distribution exists for all agents i ∈ I, we are one step closer to proving the
existence of a stationary equilibrium.

Definition 2.12 (First-order stochastic dominance). For any pair of distributions µ1 and
µ2 in P(X), we write µ1 ⪰ µ2 if for every increasing, measurable, and bounded function
f : X → R, we have ∫

f(x)µ1(dx) ≥
∫

f(x)µ2(dx).

We call ⪰ the first-order stochastic dominance order.

Lemma 2.5. Suppose Assumptions 2.1 - 2.3 hold. For a given aggregate state Q and
a measurable selection g from the optimal policy correspondence G, the adjoint Markov
operator as defined in (2.16) will be increasing in the sense that for two measures µ2 ⪰ µ1

we have T ∗
gi,Q

µ2 ⪰ T ∗
gi,Q

µ1.

Again, the proof of this result is provided in Appendix A. Intuitively, Lemma 2.5 means
that if the current state is drawn from a distribution that puts more weight on higher
asset holdings, the probability distribution for next period’s values will also put more
weight on higher asset holdings. This result is closely connected to the ascending policy
correspondence, but generalized for a randomly drawn endogenous state.

Theorem 2.6 (Existence of Stationary Equilibrium). Let Assumptions 2.1- 2.3 be satisfied.
Then there exists a stationary equilibrium.

Proof. For any agent i ∈ I, T ∗
gi,Q

is an increasing map when equipping P(X) with the
first-order stochastic dominance order ⪰ (see Lemma 2.5). Since X is assumed to be
compact, we have m ≡ inf(X) ∈ X. Let δm be the measure that assigns probability 1 to
the point set {m}. Then µ ⪰ δm for all µ ∈ P(X), in particular T ∗

gi,Q
δm ⪰ δm, and from

Theorem 1 in Hopenhayn and Prescott (1992)10 it follows that T ∗
gi,Q

has a fixed-point µ∗
i .

Let Gi denote the set of measurable selections from Gi. Then, the adjoint Markov
correspondence is given by

T ∗
i,Qµ = {T ∗

gi,Q
µ}gi∈Gi

,

10See Theorem B11 in Appendix B.
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and we define the invariant distribution correspondence Fi : Q → 2P(X) as Fi(Q) = {µ ∈
P(X) : µ ∈ T ∗

i,Qµ}. Note that Fi(Q) will be non-empty valued and upper hemicontinuous.
Define the joint correspondence over all agents as

F = (Fi)i∈I : Q → 2
(

P(X)I
)
.

Then, for any distribution µ ∈ F (Q) and for sets Ai ∈ B(X), we have

µ

(∏
i∈I

Ai

)
=
∏
i∈I

µi(Ai),

with µi ∈ Fi(Q). Denote the random variable id : XI → XI on the probability space
(XI , B(XI), µ) by µ̂. Given the aggregator A, define a mapping Ã by the convention that
Ã(µ) = A(µ̂) and consider

Â(Q) = {Ã(µ) ∈ Rq : µ ∈ F (Q) for all i}

It is clear that Q∗ is the aggregate state of a stationary equilibrium if and only if
Q∗ ∈ Â(Q∗). Since Â is an upper hemicontinuous and convex-valued correspondence that
maps a compact and convex subset of Rq into itself, we can apply the Kakutani fixed-point
theorem as in the proof of Theorem 2.2. This shows the existence of an aggregate state
Q∗ ∈ Â(Q∗) and hence, the existence of a stationary equilibrium.

3 Computational Solution Methods

With the results in Section 2 we now know under which conditions we can study a general
equilibrium of a BHA economy. For economic applications, however, we also need to
find the solutions. Since economists are usually only interested in stationary equilibria
as discussed in Section 2.5, in the following we will focus on stationary solution methods
only. With the principle of optimality, finding a stationary solution to the sequential
optimization problem in Definition 2.3 is equivalent to solving for the unknown function
v in the functional relationship (2.10). In the following, we will discuss the three main
types of computational methods which can be used to find the value function v. Note that
since we focus on stationary equilibria, we will always assume that the sequence of market
aggregates, Q, is constant and we will denote with S = X × Z the state space consisting
of endogenous choices and exogenous shocks.
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3.1 Guess and Verify

For simple problems, the solution to the functional relationship in (2.10) can sometimes
be obtained with the "Guess and Verify" approach, meaning that we guess the functional
form of the value function and then verify our guess by finding the parameters which solve
the equation.

Example 3.1. Consider a simplified version of the Aiyagari model in Section 2.1, where
we ignore any income or interest from savings, meaning that we are only concerned with
optimally splitting some given resources between periods. The budget constraint then
reads

at+1 = at − ct.

Also, per-period utility is given by log(ct). Hence, the optimization problem is

max E0

{ ∞∑
t=0

βt log(ct)
}

subject to

at+1 = at − ct,

Using the budget constraint we can substitute ct and write the functional relationship for
our value function as11

v(a) = max
a′∈Γ

log(a − a′) + βv(a′).

Now we make a guess on the value function and assume it takes the form v(a) = A+B·log(a)
for some values A and B. Inserting this guess into the Bellman equation yields:

v(a) = A + B · log(a) = max
a′∈Γ

log(a − a′) + βA + βB log(a′)

Taking first order conditions yields

a′ = Bβa

1 + Bβ

Next, re-write the Bellman equation in terms of the optimal a′:

A + B log(a) = log
(

a − Bβa

1 + Bβ

)
+ βA + βB log

(
Bβa

1 + Bβ

)

11Remember the convention that we denote next periods values with a prime, meaning that a′ is the
choice for next periods asset holdings.
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We have
log

(
a − Bβa

1 + Bβ

)
= log

(
a

1 + Bβ

)
= log(a) − log(1 + Bβ),

and
βB log

(
Bβa

1 + Bβ

)
= βB log(a) + βB log

(
Bβ

1 + Bβ

)
.

Thus, we get:

A + B log(a) = log(a) − log(1 + βB) + βA + βB log(a) + βB log
(

Bβ

1 + Bβ

)

= (1 + βB) log(a) − log(1 + βB) + βA + βB log
(

Bβ

1 + Bβ

)

Now, we can simply compare the coefficients and get

B = 1
1 − β

A = (1 − β)−1 log(1 − β) + β(1 − β)−2 log(β),

which are both constants as assumed above and we have verified our guess.

The example above shows one of the advantages of the guess and verify approach: If
successful, this approach provides a correct analytical solution. However, it also highlights
some significant disadvantages. First, we had to simplify the economic model and while
the resulting solution might be analytically correct, it does not provide any meaningful
economic insights. Also, we need an educated guess on the functional form of the value
function v. Oftentimes this means that models are designed in a way that is likely to result
in a value function whose functional form is already known, rather than concentrating
on interesting or important economic channels. This introduces a serious constraint for
economic analyses.

3.2 Value Function Iteration

Nowadays, the availability of high-quality micro-data has led to a trend towards increasingly
complex models which are able to replicate several empirical moments. These models
are too intricate to be solved analytically. Instead, numerical algorithms are used which
provide an approximation of the true solution. One such method has proved very robust
and is applicable to nearly every situation: value function iteration.

The idea of this method is straightforward, as we simply proceed by constructing a
sequence of value functions and associated policy functions by iteratively applying the
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same operation. Suppose we have a guess v0 for the optimal solution v∗, with v0 ̸= v∗.
Then we compute:

vnew = sup
y∈Γ(x,z;Q)

{
R(x, y, z) + βE

[
v0(y, z′; Q)

]}
.

Since v∗ is the unique solution of the functional relationship in (2.10), vnew ̸= v0. But
what can we say about the ’distance’ to the optimal solution? If we could establish that
∥vnew − v∗∥ ≤ ∥v0 − v∗∥, then we would have come closer to the true solution. The next
theorem formally establishes this result.

Theorem 3.1. Let Assumptions 2.1 and 2.2 hold and define the operator H by

(Hv)(x, z; Q) = sup
y∈Γ(x,z;Q)

{
R(x, y, z) + βE

[
v(y, z′; Q)

]}
. (3.1)

Then H : C(S) → C(S), has a unique fix point v in C(S) and for v0 ∈ C(S)

∥Hnv0 − v∥ ≤ βn∥v0 − v∥, for n ≥ 1 (3.2)

Moreover, the correspondence G : S → X defined by

G(x, z; Q) =
{

y ∈ Γ(x, z; Q) : v(x, z; Q) = R(x, y, z) + βE
[
v(y, z′; Q)

]}

is non-empty, compact and upper hemicontinuous.

Proof. We follow the idea in Stokey et al. (1989b): Fix any f ∈ C(S). Then the operator

(Mf)(x, z; Q) = E
[
f(x, z′; Q) | z

]

is clearly bounded, since ∥Mf∥ ≤ ∥f∥. But M is also continuous. To see this, choose a
sequence (xn, zn) → (x, z). Then,

|(Mf)(x, z; Q) − (Mf)(xn, zn; Q)|

≤ |(Mf)(x, z; Q) − (Mf)(x, zn; Q)| + |(Mf)(x, zn; Q) − (Mf)(xn, zn; Q)|

≤ |(Mf)(x, z; Q) − (Mf)(x, zn; Q)| + E
[
|f(x, z′; Q) − f(xn, z′; Q)|

]

Now, Z is compact and with the feller property of the Markov process follows

lim
n→∞

|(Mf)(x, z; Q) − (Mf)(x, zn; Q)| → 0.
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Also, since X × Z is compact and f continuous, f is uniformly continuous on X × Z.
Thus, for any ε > 0 there exists N ≥ 1 such that for all n > N and z′ ∈ Z

|f(x, z′; Q) − f(xn, z′; Q)| < ε

Together we can infer that |(Mf)(x, z; Q) − (Mf)(xn, zn; Q)| → 0 and M is continuous.
Since R and Mv are bounded, Hv is also bounded. Moreover, since Γ is compact-valued

and continuous, the Theorem of the Maximum (see Theorem B13 in Appendix B) tells us
that Hv also has to be continuous, meaning H : C(S) → C(S).

Next, for v2 ≥ v1 we clearly have Hv2 ≥ Hv1, and for any constant function c

H(v + c) = Hv + βc. Hence, H satisfies Blackwell’s sufficient condition for a contraction
(Theorem B12), and since C(S) is a Banach space, the Contraction Mapping Theorem
(Theorem B14) tells us that H has a unique fixed point v ∈ C(S) and (3.2) holds. Lastly,
the stated properties for G follow from the Theorem of the Maximum.

With this result we have a straightforward way to obtain the optimal value function v∗

by simply iteratively applying the operator defined in (3.2) to an initial guess v0:

v∗ = lim
n→∞

Hnv0

This iteration procedure can easily be implemented numerically, if we have a suitable
method to apply this operation. The most commonly employed solution strategy is based
on the discretization of the state space. To do so, we transform the state space S = X × Z

into a discrete grid: Choose lower and upper bounds (x, x̄) and a number of grid points nx

for the endogenous variable X. Then we form a grid X̂ = {x, . . . , x̄} such that |X̂| = nx.12

With the same procedure we construct a grid Ŷ , |Ŷ | = ny for the set of possible choices,
with Ŷ ⊆ X (we need not restrict the choices to the same grid as the state variables).
Finally, we do the same for the exogenous shocks z with nz the number of grid points to get
a grid Ẑ = {z, . . . , z̄}. To discretize the Markov transition function Pz of the exogenous
shocks we use the same number of grid points nzj

and a quadrature method such as the
one described by Tauchen (1986).

Then, a fully discretized algorithm implementing value function iteration can be
described as follows:

12Grids do not have to be constructed with equally spaced grid points. Better results can often be
achieved by choosing the spacing of the grid points more carefully. For example, we might allow for more
grid points within subsets that contain a high mass of agents, while making the grid more dispersed for
choices which are likely to be obtained by only a negligible fraction of the population (e.g.: using more grid
points around small asset holdings, while making the grid more dispersed for extreme wealth holdings).

25



Algorithm 3.1 (Discretized VFI).

Discretize the state space S and the transition function Pz.
Declare initial value v0 (an array of dimension nx × nz).
Declare iteration count n = 0.
Declare the tolerance level ε.
while ∥vn+1 − vn∥ > ε do

Set n = n + 1.
Set vold = vn−1.
for x = 1, . . . , nx do

for z = 1, . . . , nz do
Calculate E

[
vold|z

]
Calculate vn(x, z) = max

y=1,...,ny

R(x, y, z) + βE
[
vold(y, z′|z)

]
Calculate gn(x, z) = arg max

y=1,...,ny

R(x, y, z) + βE
[
vn(y, z′|z)

]
end for

end for
end while

With the findings presented in above, this algorithm is expected to converge when the
grid is fine enough (we will discuss this issue more closely in Section 4 below). However,
this approach can be computationally expensive as optimization is required in every step
and convergence tends to be slow. Although the process can be accelerated by using coarser
discretized grids, this comes at the cost of reduced precision and may risk convergence
issues.

3.3 Howard’s Improvement Algortihm

As noted above, Algorithm 3.1 can be slow and computationally expensive. However,
empirical observations in various applications have revealed that the optimal policy function
often converges faster than the value function. This led to the development of an improved
discretized algorithm that is usually less computationally expensive than simple value
function iteration. The idea is to refrain from performing optimization in every step.
Instead, we calculate the optimal policy rule for a given guess on the value function and
then update the value function a couple of times with this policy rule. After a given number
of iterations we use the new value function to update the policy rule by performing one
optimization step and then go back to updating the value function for this new policy rule.
Since the policy rule often converges much faster than the value function, this procedure
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can drastically enhance computational performance. However, since we are combining
optimization steps with ’naive’ updates, we first need to establish convergence criteria.

Lemma 3.2. Suppose Assumptions 2.1 and 2.3 hold. For a given policy function g :
X × Z → X we define the operator

(Hgv)(x, z; Q) = R(x, g(x, z), z) + βE
[
v(g(x, z), z′; Q)

]
. (3.3)

Then Hg : C(S) → C(S) and there exists a unique fixed point vg ∈ C(S).

Proof. The proof follows the same arguments as the proof of Theorem 3.1.

The operator defined in (3.3) calculates a new value function when using the policy
function g as decision rule. Lemma 3.2 tells us that by iteratively applying Hg on an initial
guess v0 we will find a fixed-point vg which will depend on the chosen policy function
g. Note that the advantage of this approach is that we do not have to perform any
optimization. However, in general the function vg will not be equal to the optimal value
v∗. Therefore, if we want to get an improvement on the initial guess v0, we need to choose
the policy function with which to perform the operation with care. One idea is to take the
policy rule corresponding to the guess v0, meaning that we perform one optimization step
to find the optimal decision rule associated with v0 and then use this decision rule for the
operator Hg. Intuitively, using one optimization step should lead to some improvement
in the value function. Then, after some steps of applying Hg, we could calculate a new
decision rule based on the obtained value function and repeat the process. Formalizing
this idea motivates the following theorem as in Ljungqvist and Sargent (2004):

Theorem 3.3. Suppose Assumptions 2.1 and 2.3 are satisfied. Let Hg denote the operator
as defined in (3.3) and vg = Hgvg. With H being the usual value function operator as in
(3.1), find a new policy f such that

Hhvg = Hvg,

meaning that h is the optimal policy function when using vg as the continuation value.
Compute the fixed point vh:

vh = Hhvh.

Then vh ≥ vg. If g is not the optimal policy corresponding to v∗, then vh > vg for at least
one x ∈ X.
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Proof. We have

Hh(vg(x, z)) = R(x, h(x, z), z) + βE
[
vg(h(x, z), z′)

]
= H(vg(x, z))

≥ R(x, g(x, z), z) + βE
[
vg(g(x, z), z′)

]
= Hg(vg(x, z))

= vg(x, z).

Iteratively applying Hh and using the monotonicity of Hh yields

vh = lim
n→∞

Hn
h (vg) ≥ vg.

Assume vh(x) = vg(x) for all x ∈ X. Then,

vg = Hh(vg) = H(vg)

But if vg = Hvg, then vg = v∗ and vg already satisfies the optimization problem.

This theorem tells us that our idea from above is justified. We can find an improvement
on the value function without having to use an optimization procedure by simply applying
the operator as defined in (3.3) for a given policy function. This observation leads to a
simple algorithm based on the work by Howard (1960), which mostly updates the value
function using a fixed decision rule. Then, after a given number of iterations the updated
value function can be used to find an improvement on the policy rule. This includes one
optimization step. Overall, if the policy function converges faster than the value function,
we will end up with an algorithm that uses less optimization steps than the algorithm for
pure value function iteration. This should lead to a vastly improved performance, since it
will in general require far less computing power. Using the same discretization technique
as in Section 3.2, such an algorithm can be implemented as follows:
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Algorithm 3.2 (Howard’s Improvement Algorithm).

Discretize the state space S and the transition function Pz.
Declare initial value v0 (an array of dimension nx × nz).
Declare iteration count n = 0.
Declare the tolerance level ε.
Declare number of policy improvements H.

while ∥vn+1 − vn∥ > ε do
Set n = n + 1.
Set vold = vn−1.
for x = 1, . . . , nx do

for z = 1, . . . , nz do
Calculate E

[
vold|z

]
Calculate vn(x, z) = max

y=1,...,ny

R(x, y, z) + βE
[
vold(y, z′|z)

]
Calculate g(x, z) = max

y=1,...,ny

R(x, y, z) + βE
[
vold(y, z′|z)

]
end for

end for
for i = 1, . . . , nH do

vold = vn

for x = 1, . . . , nx do
for z = 1, . . . , nz do

Calculate vn(x, z) = R(x, g(x, z), z) + βE
[
vold(g(x, z), z′|z)

]
end for

end for
end for

end while
for x = 1, . . . , nx do

for z = 1, . . . , nz do
Calculate gn(x, z) = arg max

y=1,...,ny

R(x, y, z) + βE
[
vn(y, z′|z)

]
end for

end for

Figure 2 graphically illustrates the difference between using an algorithm based on pure
value function iteration (Algorithm 3.1) and an algorithm using Howard’s improvement
strategy (Algorithm 3.2) when the number of iterations without policy updates, nH , is
chosen to be 100 and 200. The model which was solved for this comparison was the same

13As a stopping criterion ε = 10−5 was used.
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Figure 2: Comparison of convergence properties for pure value function iteration (VFI)
and Howard’s Improvement Algorithm.13

economy as the one discussed in Section 2.1 and with the parameterization described in
Appendix C.14 We can immediately see how much faster Howard’s Improvement Algorithm
is, especially as the number of grid points increases. While the time consumption of pure
value function iteration increases exponentially with the grid size, Howard’s Improvement
Algorithm proves to be considerably more efficient. Interestingly, this advantage in time
consumption comes despite a substantially higher number of iterations, as evident from
Figure 2b. This is because Howard’s Improvement Algorithm requires more updates of
the value function while keeping the policy rule fixed. However, the algorithm only needs
to perform an optimization after every nH-th step, whereas pure value function iteration
constantly optimizes the decision rules. Since maximization operators are computationally
expensive, this leads to the relatively poor performance of pure value function iteration.
Lastly, we can see that regarding time consumption the difference between the choices for
nH seem to be negligible. However, choosing a lower number leads to considerably more
fluctuations in the iterations needed to find a solution. This is because with a lower nH

we preform more optimizing updates on the value function.

3.4 Equilibrium Aggregates

In order to determine an equilibrium of the economy we not only need to solve for the
individual decisions, but also compute the associated aggregate state. Section 2.5 already
established that a stationary equilibrium exists under certain assumptions. One approach
for constructing the solution could involve finding the stationary strategies of the agents
and then computing the resulting aggregate state. However, a simpler alternative is to use

14Note that to highlight the difference between the algorithms they were implemented in a purely
loop-based strategy. Vectorization could have led to substantial time reduction.

30



the optimal policy rules to calculate a distribution over the state space. Then, we derive
the aggregates based on this distribution.

Definition 3.1 (Agent Distribution). Let Pz be the transition function of the exogenous
shock z and g a given policy function. Let P : X × Z × B(X × Z) → [0, 1] be uniquely
defined via

Pg((x, z), A × B) ≡ Pz(z, B)χA(g(x, z)). (3.4)

Then Pg is a transition function for possible states s ∈ S = X × Z.
For a proability measure µ ∈ P(X × Z) define the adjoint Markov operator

Tgµ(A × B) =
∫

Pg((x, z), A × B)µ(dx, dz) (3.5)

We call the fixed point µg of Tg the stationary agent distribution.

The transition function Pg(s, s′) yields the probability of transitioning from a given state
s today into the state s′ tomorrow given that individuals behave according to the optimal
decision rule g(s). Hence, if current states are drawn from a given distribution µ, the
adjoint operator Tgµ yields the distribution over states in the next period. Consequently,
if µ is a fixed point of Tg, the distribution over states remains constant over time and thus,
the aggregation of individual decision will also remain constant. This is an important step
for finding a stationary equilibrium.

In most economic settings, with Assumptions 2.1 and 2.3 we already have that µx × µz

is a fixed point of Tg, with µx denoting the invariant distribution over the endogenous state
and µz the invariant distribution over exogenous shocks. However, in general we need to
impose additional restrictions to ensure the existence of a unique stationary distribution
(see, e.g., Kirkby, 2014).

Assumption 3.1 (Monotone Mixing Condition (MMC)). There exist a, b ∈ S such that
a is the lower bound of S and b is the upper bound of S. Also, there exists s̄ ∈ S and
m ∈ N such that P m

g (b, [a, s̄]) > 0 and P m
g (a, [s̄, b]) > 0.

Remark. Note that an interval [x, y] on S ⊆ Rn refers to the subset given by [x, y] =
[(x1, . . . , xn), (y1, . . . , yn)] = {s ∈ S : si ∈ [xi, yi] for i = 1, . . . , n}

In words, this assumption states that regardless of starting from the highest or lowest
state, there is always a positive probability of crossing the threshold s̄ within m or more
periods. Also, note that Assumption 2.1 already ensures the existence of lower and upper
bounds, since X and Z are assumed to be compact.
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If the MMC condition is satisfied for our Markov process Pg, then we can show
the following result from Hopenhayn and Prescott (1992), which provides us with a
straightforward procedure of calculating the stationary distribution:

Theorem 3.4. Suppose Assumption 3.1 is satisfied. If Pg is increasing with regards
to the first-order stochastic dominance order ⪰, then there exists a unique stationary
distribution µg for the Markov Process Pg. Additionally, for any initial distribution µ0,
T n

g µ0 =
∫

P n
g (s, ·)µ0(ds) converges to µg.

Proof. We will follow the argument given in Hopenhayn and Prescott (1992):
Choose ε > 0 and m ∈ N such that P m

g (b, [a, s̄]) > ε and P m
g (a, [s̄, b]) > ε. Denote with δs

the probability measure which puts mass 1 on the point set {s}.
Let f : S → R+ be an arbitrary nonnegative, increasing, and continuous function.

Then we have
∫

f(s)T m
g δa(ds) ≥ f(a)

∫
s<s̄

T m
g δa(ds) + f(s̄)

∫
s≥s̄

T m
g δa(ds)

≥ f(a)(1 − ε) + f(s̄)ε

=
∫

f(s){(1 − ε)δa + εδs̄}(ds)

Hence, T m
g δa ⪰ (1−ε)δa+εδs̄ and with the same argument we see that T m

g δb ⪯ (1−ε)δb+εδs̄.
Moreover, since Tg is increasing, so is T k

g by induction and T m
g δa ⪯ T m

g δb. Together we
have established that

(1 − ε)δa + εδs̄ ⪯ T m
g δa ⪯ T m

g δb ⪯ (1 − ε)δb + εδs̄

and with monotonicity and linearity of Tg follows

(1 − ε)T k
g δa + εT k

g δs̄ ⪯ T m+k
g δa ⪯ T m+k

g δb ⪯ (1 − ε)T k
g δb + εT k

g δs̄

By Proposition 1 in Hopenhayn and Prescott (1992), the monotone sequences {T k
g δa}

and {T k
g δb} will converge and we denote their limits with µa and µg. Also, there is a

subsequence of T K
g δs̄ converging to µ̄ and since the stochastic order induces closed graphs,

we get:
(1 − ε)µa + εµs̄ ⪯ µa ⪯ µb ⪯ (1 − ε)µb + εµs̄.

But this inequality also implies that µa ⪯ µs̄ ⪯ µb which can only hold if µa = µs̄ = µb.
Now, µs̄ is a fixed point of Tg and from the monotonicity of Tg and the definition of µa

and µb follows that T k
g µ → µs̄ for any measure µ ∈ P(S).
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With this result we can provide a simple algorithm for a numerical approximation of
the stationary agent distribution. Following the notation from Kirkby (2019), for example,
we can calculate µg as follows:

Algorithm 3.3 (Iteration on Measure of Agents).

Solve the individuals’ optimization problem using Algorithm 3.1 or Algorithm 3.2.
Obtain the policy function g(x, z).
Declare initial distribution µ0 (array of size nx × nz whose elements sum to 1).
Declare iteration count n = 0.
Declare tolerance level ε.

while ∥µn+1 − µn∥ > ε do
Set n = n + 1.
Set µn = 0.
for x = 1, . . . , nx do

for z = 1, . . . , nz do
for z′ = 1, . . . , nz do15

µn(x(g(x, z), z) = µn(x(g(x, z), z′) + (g(x, z) ∗ P (z, z′)) ∗ µn−1(x, z)
end for

end for
end for

end while

As noted above, the agent distribution µg provides us with a measure over states
when agents make decisions according to the rule g. If we denote with µi the probability
distribution over X for one agent i resulting from the optimal strategy a∗

i , then for any
set A ∈ B(X) we will have

µg(A) =
∫

i∈I
µi(A) dλ(i),

meaning that the measure of agents in a given set A will be equal to the aggregation of
the individual probabilities of being in state A.

Example 3.2. For sake of simplicity assume we have a situation where µi(A) = i, meaning
that the probability for a given agent i to be in state A is equal to i. Then, the aggregate
measure would yield µg(A) = 0.5 and we would expect that exactly half of the population
ends up in state A.

15Note that in this step we use the discretized version of the Markov transition function Pz and the
operation ′∗′ denotes the convolution of two functions.
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With this observation is is clear that there exists a mapping Φ : P(S) → Q such
that Φ(µg) = A((a∗

i )i∈I) and we can calculate the market aggregates by using µg instead
of the optimal strategies.16 Therefore, we can now provide a simple algorithm for the
computation of a stationary equilibrium:

Algorithm 3.4 (Computation of Stationary Equilibrium).

Declare tolerance level ε.
Declare initial aggregate state Q0.
Declare iteration count n = 0.
while ∥Qn+1 − Qn∥ > ε do

Set n = n + 1.
Set Qold = Qn−1

Solve the individuals’ problem given Qold using Algorithm 3.1 or Algorithm 3.2.
Compute the stationary agent distribution µp.
Compute the implied aggregate state Qnew = Φ(µp).
Compute d = ∥Qnew − Qold∥
Use appropriate root finding procedure to compute Qn based on d.

end while

The last step in Algorithm 3.4 mentions using a root finding procedure, since the
algorithm can be understood as finding the root of a function F : Q → Rq which yields
the difference between a given market aggregate and the aggregate state from the optimal
solution. For example, in a simple model economy as the one in Aiyagari (1994) discussed
in Section 2.1, we could use a bijection method to find the equilibrium interest rate. The
intuition for this is straightforward: If the model solution yields higher capital demand
than capital supply, increase r and solve the model again. If capital supply exceeds capital
demand, decrease r and solve the model again. This idea is illustrated in Figure 1a. In
more complex settings with higher degrees of non-linearities, however, we might be forced
to employ a more intricate strategy, such as a Quasi-Newton method.

16For example, in the model in Section 2.1 we were interested in total assets held by the consumers.
Based on their optimal strategies this could be calculated by

A1 =
∫

i∈I
ai,t−1(zt−1

i ) dλ(i).

However, if we know the distribution over states at time t and the optimal policy function, we could also
calculate it as

A2 =
∫

s∈s

g(s) dµg(s),

and A1 = A2.
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4 Numerical Properties

With the results discussed in Sections 2 and 3, we now know under which conditions there
exists an equilibrium in a BHA model economy and how to compute an equilibrium using
full discretization of the state space. However, the numerical solution approach is merely
an approximation of the true solution and convergence might not be guaranteed. Moreover,
even if convergence is guaranteed, the numerical errors might still be huge for finite grid
choices. Hence, in this section we will look more closely at the properties of the numerical
solution algorithms discussed above. In doing so, we will primarily refer to the results in
Kirkby (2017, 2019) which are based on the third chapter in Kirkby (2014).

4.1 Discretization Procedure

Before we can analyze the numerical solution properties, we follow the approach in Kirkby
(2017) and formalize the discretization process that was briefly introduced in Section
3. We want to discretize the current endogenous state X, the decision variable Y and
the exogenous shock Z. In the following we will use Assumption 2.1 as this ensures
compactness of our sets.

First, we choose a number nx and partition X into nx mutually disjoint sets X1, . . . , Xnx

such that X = ∪nx
i=1Xi. Then we select arbitrary points xi ∈ Xi for i = 1, . . . , nx, and get

a grid X̂ = {x1, . . . , xnx}. We define the grid size of X̂ as

dX = max
x∈X

min
x̂∈X̂

∥x − x̂∥.

We use the same procedure for the choice variable Y and end up with a grid Ŷ =
{y1, . . . , yny} with associated grid size

dY = max
y∈Y

min
ŷ∈Ŷ

∥y − ŷ∥,

and for the exogenous shock we get Ẑ = {z1, . . . , znz} with

dZ = max
z∈Z

min
ẑ∈Ẑ

∥z − Ẑ∥.

Finally, we discretize the transition function for Z using the same grid Ẑ and make sure
that P̂ (z, zi) = P (z, Zi), for all i = 1, . . . , nz, with Zi denoting the partition of Z that we
used to form our grid. For example, this can be achieved using the method described in
Tauchen (1986).

35



For our solutions we consider the set of piecewise constant functions

V̂ =
{

v̂ : X × Z → R
∣∣∣∣∣ v̂ is bounded, continuous, and

v̂ is constant on (Xi, Z,), i = 1, . . . , nx , j = 1, . . . , nz

}

As noted by Kirkby (2017), V̂ is a closed subspace of the set of bounded and continuous
functions equipped with the norm ∥v̂∥ = sup(x,z)∈X×Z |v̂(x, z)| for v̂ ∈ V̂ .

4.2 Error Bounds for the Approximated Value Function

To analyze the limiting behavior of our discrete algorithms provided in Section section 3,
we no turn to computing upper bounds for the numerical errors committed by using a
discretization procedure as described above. First, define the discretized version of the
value function operator as used in Algorithm 3.3:

Ĥ(v)(xi, zj) = sup
y∈Γ̂(xi,zi)

R(xi, y, zi) + β
nz∑

k=1
v(y, zk)P̂ (zj, zk) (4.1)

Similarly, the discretized version of the functional relationship determining the optimal
value function is

v̂(xi, zj) = sup
y∈Γ̂(xi,zi)

R(xi, y, zi) + β
nz∑

k=1
v̂(y, zk)P̂ (zj, zk) (4.2)

Lemma 4.1. With Assumption 2.1 the discretized Bellmans equation (4.2) has a unique
solution v̂ ∈ V̂.

Proof. With similar arguments as in the proof for Theorem 3.1, we note that Ĥ satisfies
Blackwell’s sufficient conditions for a contraction (with modulus β ∈ (0, 1)), and the
statement follows from the Contraction Mapping theorem.

As discussed in Section 2, the return function is bounded by Assumption 2.1 and the
value function v will be bounded as well. Also, the following lemma will prove useful:

Lemma 4.2. Let H be a contraction with fixed point v and let vn denote the solution of
iteratively applying H to an initial value v0. Then, for ∥vn − vn−1∥ ≤ ε we have

∥v − vn∥ ≤ β(1 − β)−1ε.

The proof can be found in Appendix A. The value ε > 0 in the above lemma can be
thought of as the tolerance level in one of our algorithms. In this case, vn is the value
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function that we end up with, if the algorithm terminates after n steps. Hence, we already
have an upper bound for the distance between the discretized value function we get from
our algorithm and the true discretized value function satisfying (4.2). Now, we only need
a bound for the difference between the discretized value function and the true solution.
Then, we could immediately infer an upper bound on the error we commit by using one of
our algorithms.

The following result builds upon the concepts presented in Kirkby (2017). However,
as our focus is solely on overall convergence, the derived error bounds are intentionally
less restrictive to simplify the proof. Also, a similar analysis is provided by Santos and
Vigo-Aguiar (1998).

Lemma 4.3. Suppose Assumptions 2.1, 2.2, 2.3 and 3.1 are satisfied. Let v denote the
optimal value function defined in (2.10) and v̂ denote the discretized value function defined
in (4.2). Then for any (x, z) ∈ Xi × Zj we have

|v(x, z) − v̂(x, z)| ≤ c(i, j),

for a constant c(i, j).

Proof. In the following, let xi−1 (xi+1) denote the point in X̂ which is one grid point less
(more) than xi in every dimension (as X can have more than one dimension), and similarly
for Ŷ and Ẑ.

Define the following constants:

dEv(i, j) = max
xl∈X̂

nz∑
k=1

|v(xl, zj+1) − v(xl, zj−1)|P̂ (zj, zk)

dv(i, j) = max
{

|v(xi+1, zj+1) − v(xi, zj)| , |v(xi−1, zj−1) − v(xi, zj)|
}

dR(i, j) = max
y∈Ŷ

max
{

|R(xi, yk, zj) − R(xi, yk−1, zj)| ,

|R(xi, yk, zj) − R(xi, yk+1, zj)|
}

,

which are well-defined and finitie, since R and v are bounded. Then we have

|v(x, z) − v(xi, zj)| ≤ dv(i, j),
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and

|v(xi, zj) − v̂(xi, zj)| =
∣∣∣∣∣ sup

y∈Γ(xi,zj)
R(xi, y, zj) + β

∫
v(y, z′)P (zj, dz′)

− sup
y∈Γ̂(xi,zj)

R(xi, y, zj) + β
nz∑

k=1
v̂(y, zk)P̂ (zj, zk)

∣∣∣∣∣
≤
∣∣∣∣∣ sup

y∈Γ(xi,zj)
R(xi, y, zj) − sup

y∈Γ̂(xi,zj)
R(xi, y, zj)

∣∣∣∣∣
+
∣∣∣∣∣ sup

y∈Γ(xi,zj)
β
∫

v(y, z′)P (zj, dz′) − sup
y∈Γ̂(xi,zj)

β
nz∑

k=1
v̂(y, zk)P̂ (zj, zk)

∣∣∣∣∣
≤dR(i, j) + βdEv(i, j)

Hence, with the triangular inequality it follows that

|v(x, z) − v̂(x, z)| ≤ |v(x, z) − v(xi, zj)| + |v(xi, zj) − v̂(xi, zj)|

≤ dv(i, j) + dR(i, j) + βdEv(i, j) ≡ c(i, j).

This result tells us that the difference between the correct solution and our approximated
solution will only depend on the partition of the state space and converge to zero as the
distance between the grid points goes to zero (as this would mean that the constants
defined in the proof would go to zero). Now, we can finally calculate an upper bound for
the numerical error ∥v − v̂N∥ resulting from using our discrete algorithm when using a
given tolerance level as stopping criterion.

Theorem 4.4. Suppose Assumptions 2.1, 2.2, 2.3 and 3.1 are satisfied. Let v denote the
optimal value function defined in (2.10) and v̂n the sequence of discretized value functions
obtained by iteratively applying Ĥ starting from an initial function v0. If v̂N denotes
the discretized value function at which the algorithm stops given the stopping criterion
∥vn − vn−1∥ < ε, for some ε > 0, then

∥v − v̂N∥ ≤ β

1 − β
(C + ε),

where
C = 1 − β

β
max

i=1,...,nx,
j=1,...,nz

c(i, j)

Proof. Let v̂ be the fixed point of Ĥ. The statement immediately follows from the
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triangular inequality together with lemmas 4.2 and 4.3:

∥v − v̂N∥ ≤∥v − v̂∥ + ∥v̂ − v̂N∥

≤ ∥c(i, j)∥ + β(1 − β)−1ε.

4.3 Error Bounds for the Approximated Policy Rule

The results above provide us with an upper bound on the numerical error in the value
function. Next, we are also interested in the optimal policy resulting from the approximated
value function. Let v̂N denote the approximation of the true value function resulting
from our discrete algorithms after N iterations. Denote with ĝ the associated policy rule
resulting from the algorithm and with g the correct optimal policy. What can we say
about ∥g − ĝ∥?

To answer this question we first need to put even more structure on our return function.

Assumption 4.1. For any given choice of x and z, the return function R(x, y, z) is
decreasing in y.

This assumption is again not very restrictive. Remember that the current choice
variable y becomes next period’s state variable x. In most economic settings, a higher
state variable next period corresponds to a higher continuation value, while reducing
current period’s pay-offs. For example, consider once again the simple economy in Section
2.1. There, the choice variable is asset holdings and while higher savings would lead to
higher welfare next period, they reduce current returns, since higher savings induce lower
consumption. In contrast, suppose the assumption does not hold for a specific model.
Then, agents could choose a higher variable y to increase both their current and future
returns. Such a problem would not be well-posed and agents would always choose the
highest possible y. Hence, in a BHA economy this assumption is almost always satisfied.

To find the error bounds on our approximated policy function, we again follow a
simplified version of the ideas presented in Kirkby (2017). First, let g±m(x, z) denote m

grid points more or less than g(x, z) in every dimension (again, keep in mind that the
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choice set may have more than one dimension), and define the following expressions:

dg,m(i, j) = max
{

|g+m(xi, zj) − g(xi, zj)| , |g−m(xi, zj) − g(xi, zj)|
}

dR,m(i, j) = max
{

|R(xi, g+m(xi, zj), zj) − R(xi, g(xi, zj), zj)| ,

|R(xi, g−m(xi, zj), zj) − R(xi, g(xi, zj), zj)|
}

Now we can describe an upper bound for the error in the policy function that results from
using a discrete algorithm and an approximated value function.

Theorem 4.5. Suppose Assumptions 2.1, 2.2, 2.3, 3.1 and 4.1 hold. Let g denote the
optimal policy function and ĝ the approximated policy function resulting from our discrete
algorithm after N iteration. Assume that for the associated value functions we have
∥v − v̂n∥ ≤ δV . Then for any (x, z) ∈ Xi × Zj we have

|g(x, z) − ĝ(x, z)| ≤ dg(x, z) almost everywhere,

with

dg(x, z) = max
{ l+∑

m=0
dg,m,

l−∑
m=0

dg,m

}

l+ = arg min
{ l∑

m=0
dR,m(x, z) ≤ δV

}

l− = arg min
{ l∑

m=0
dR,m(x, z) ≥ δV

}

Proof. Remember that the correct optimal policy function is defined as

g(x, z) = arg sup
y∈Γ(x,z)

R(x, y, z) + β
∫

v(y, z′)P (z, dz′), (4.3)

while our approximated policy function takes the form

ĝ(x, z) = arg sup
y∈Γ̂(xi,zj)

R(xi, y, zj) + β
nz∑

k=1
v̂N(y, zk)P̂ (zj, zk). (4.4)

Note that the suprema on the right side are just the value functions v(x, z) and v̂N+1(x, z).
Hence, the suprema can differ by at most δV at any point.

First, assume g(x, z) > ĝ(x, z). We want to find out by how much g can exceed ĝ. For
any choice g̃(x, z) > ĝ(x, z), the return function will decrease. Assuming that g̃(x, z) lies
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within l grid points of ĝ(x, z), the associated loss in the return function is

R(x, g̃(x, z), z) − R(x, g(x, z), z) ≤ −
l∑

m=0
dR,m(x, z).

However, g̃(x, z) can only fulfill (4.3), if the attained supremum is at least as great as that
attained by ĝ. Thus, it must hold that

δV ≥ −
l∑

m=0
dR,m(x, z).

Denote with l+ the minimum l for which this condition is satisfied, that is

l+ = arg min
l≥0

{
δV ≥ −

l∑
m=0

dR,m(x, z)
}

.

Then l+ represents the maximum distance we have to go and the corresponding distance
in g is given by

d+ =
l+∑

m=0
dg,m

With same argument for g̃(x, z) < ĝ(x, z) we get a bound l− and a distance d−. Hence,
the statement holds with

dg(x, z) = max{d+, d−}.

Lastly, the result holds only almost everywhere, since g is the optimal policy only almost
everywhere.

4.4 Error Bound for Approximated Agent Distribution

Our algorithm to compute the stationary equilibrium, Algorithm 3.4, not only uses the
solutions to the individuals’ optimization problems, but also the aggregation of individual
strategies through the invariant distribution over states. Before turning to the main result
of convergence towards the true equilibrium, we still need to look at the difference between
our approximated agent distribution and the true distribution.

For the following analysis and to reproduce the arguments presented in Kirkby (2019),
it will be convenient to represent the Markov operator for the agent distribution in an
iterated function systems notation. Remember that out transition function between states
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was defined as
Pg((x, z), A × B) ≡ Pz(z, B)χA(g(x, z)), (4.5)

where Pz is the transition function on for the Markov process on Z. Now, consider a
function ϕ : S × W → S and the i.i.d. random variable Ω : (W, B(W )) → R. Then, our
transition function can also be represented as

P (s, C) = Ω({ω : ϕ(s, ω) ∈ C}), (4.6)

for any s ∈ S and C ∈ B(S) (see, e.g., Stenflo, 2001; Santos and Peralta-Alva, 2005).17

Also, we introduce a new metric to indicate the distance between two measures. Let F
denote the set of bounded continuous functions f : S → [0, 1]. Then, for two measures
µ, ν ∈ P(S) we define

∥µ − ν∥ = sup
{∣∣∣∣∣
∫

fdµ −
∫

fdν

∣∣∣∣∣ : f ∈ F
}

Now we have the tools to find an upper bound for the numerical error that we introduce
by using the discretized policy function and the discretized Markov operator for the
calculation of the agent distribution. First, the following lemma from Kirkby (2019)
provides us with a distance measure for the resulting transition functions:

Lemma 4.6. Let g, ĝ : S → X be two policy functions satisfying ∥g − ĝ∥ ≤ δ. Denote with
P the transition function associated with g as defined in (4.5) and with P̂ the transition
function associated with ĝ and the discretized exogenous shock P̂z, as used in Algorithm 3.3.
Then

∥P m − P̂ m∥ ≤ mδ

Proof. We first look at P̃ , which is the transition function that is derived from using ĝ

together with the true Pz. We have:

17For example, if Pz(z, B) = π(z), we could find an i.i.d shock ω such that Ω((z + ω) ∈ B) = π(z).
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∥P m − P̃ m∥

= max
s∈S

[ ∫
∥P m(s, ω) − P̃ m(s, ω)∥Ω(dω)

]
≤ m max

s∈S

[ ∫
∥P (s, ω) − P̃ (s, ω)∥Ω(dω)

]
= m max

s∈S

[ ∫
∥(g(s), Pz(z, dz(dω))) − (ĝ(s), Pz(z, dz(dω)))∥Ω(dω)

]
≤ m max

s∈S

[ ∫
∥g(s) − ĝ(s)∥Ω(dω)

]
≤ m max

s∈S

[ ∫
δΩ(dω)

]
= mδ

Next, remember that our discretized transition matrix operates on the partition Xi × Zj

and that P̂z(z, zi) = P (z, Zi) for all i = 1, . . . , nz. Thus, we have

∥P̃ m − P̂ m∥

= max
s∈S

[ ∫
∥P̃ m(s, ω) − P̂ m(s, ω)∥Ω(dω)

]
≤ m max

s∈S

[ ∫
∥P̃ (s, ω) − P̂ (s, ω)∥Ω(dω)

]
= m max

s∈S

[ ∫
∥(ĝ(s), Pz(z, dz(dω))) − (ĝ(s), P̂z(z, dz(dω)))∥Ω(dω)

]
= m max

s∈S

[ ∑
i=1,...,nx
j=1,...,nz

∫
Xi×Zj

∥(ĝ(s), Pz(z, dz(dω))) − (ĝ(s), P̂z(z, dz(dω)))∥Ω(dω)
]

= m max
s∈S

[ ∑
i=1,...,nx
j=1,...,nz

∫
Xi×Zj

0Ω(dω)
]

= 0

Finally, with the triangular inequality we get

∥P m − P̂ m∥ ≤ ∥P m − P̃ m∥ + ∥P̃ m − P̂ m∥ ≤ mδ

This lemma tells us that that the numerical error in our transition matrix resulting
from our discretization procedure is directly related to the error bound from the discretized
policy functions. In particular, if our approximated policy function converges to the true
policy function, then the error in our approximated transition function will vanish as well.
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Now, the last result we need is to translate this error bound from the transition function
to the stationary agent distribution. Following Kirkby (2019) we get the following lemma:

Lemma 4.7. Suppose Assumption 2.1 holds and the adjoint Markov operator of our
transition function, T m,∗, is a contraction mapping with modulus β. If ∥g − ĝ∥ < δ, for
some δ > 0, then

∥µ∗ − µ̂∗∥ ≤ mδ

1 − β

Proof. From Lemma 4.6 we get ∥P m − P̂ m∥ < mδ. Now, for any Lipschitz continuous
function f with constant L we get

∣∣∣∣∣
∫

f(s)µ∗(ds)−
∫

f(s)µ̂∗(s)
∣∣∣∣∣

=
∣∣∣∣∣
∫

f(s)P m · µ∗(ds) −
∫

f(s)P̂ m · µ̂∗(s)
∣∣∣∣∣

≤
∣∣∣∣∣
∫

f(s)P m · µ∗(ds) −
∫

f(s)P m · µ̂∗(s)
∣∣∣∣∣

+
∣∣∣∣∣
∫

f(s)P m · µ̂∗(ds) −
∫

f(s)P̂ m · µ̂∗(s)
∣∣∣∣∣

≤
∣∣∣∣∣
∫

f(s)P m · µ∗(ds) −
∫

f(s)P m · µ̂∗(s)
∣∣∣∣∣+ L∥P m − P̂ m∥

≤ β

∣∣∣∣∣
∫

f(s)µ∗(ds) −
∫

f(s)µ̂∗(s)
∣∣∣∣∣+ Lm∥P m − P̂ m∥

≤ β

∣∣∣∣∣
∫

f(s)µ∗(ds) −
∫

f(s)µ̂∗(s)
∣∣∣∣∣+ Lmδ

Since S is compact by assumption, we can define d = sups,s′ ∥s − s′∥, which is finite. If
∥f∥ ≤ 1, then f is Lipschitz with L ≤ 1/d.

Hence, the result follows from

∥µ∗ − µ̂∗∥ = sup
{∣∣∣∣∣
∫

f(s)µ∗(ds) −
∫

f(s)µ̂∗(s)
∣∣∣∣∣ : f ∈ F

}
,

Thus, we have established that our discretization procedure adds a numerical error to
our stationary agent distribution which is bounded above by the error from the discretized
policy function. Lastly, we have to consider that our algorithm usually stops before
attaining the fixed point of the operator. Hence, summarizing all the results above, we
find:
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Theorem 4.8. Suppose Assumptions 2.1 and 3.1 hold. Let µ∗ be the true stationary
agent distribution and µ̂N the approximated distribution resulting from Algorithm 3.3 with
the stopping criterion ∥µ̂N+m − µ̂N∥ ≤ ε. Also, the approximation of the policy function
satisfies ∥g − ĝ∥ < δ. Then

∥µ∗ − µ̂N∥ ≤ (1 − β)−1(mδ + βε)

Proof. With the triangular inequality we get

∥µ∗ − µ̂N∥ ≤ ∥µ∗ − µ̂∥ + ∥µ̂ − µ̂N∥

where µ̂ is the fixed point of the discretized operator. Then the result immediately follows
from Lemma 4.7 and Lemma 4.2.

4.5 Summary of Results

Now, we finally have all the ingredients to characterize the convergence of our discretized
algorithms. In particular, we know under which conditions the approximated solutions
will converge to the true solution as the grid size and the tolerance level of the algorithms
become smaller:

Proposition 4.9. Let Assumptions 2.1, 2.2, 2.3, 3.1 and 4.1 be satisfied. Let v̂N denote
the numerical solution to the discretized value function problem attained after N iterations.
Then, the numerical errors in the value function, ∥v − v̂N∥, in the associated optimal policy
function, ∥g − ĝN∥, and in the stationary agent distribution, ∥µ∗ − µ̂N∥, converge to zero
as the distance between the grid points in the dimensions being discretized go to zero almost
everywhere and as N → ∞.

Proof. Since R and V are bounded functions on compact sets, the difference of evaluating
them at any two adjacent grid points must go to zero as the distance between the grid
points goes to zero. The result therefore follows from theorems 4.4, 4.5 and 4.8.

Corollary 4.10 (Convergence to Equilibria). Let F : Q → R be the function whose image
is the difference between a given aggregate state and the aggregation of individual actions.
Let F̂ denote the associated discretized function as computed in Algorithm 3.4. Under the
assumptions of Proposition 4.9, ∥F − F̂∥ converges to zero. In particular, if F is well
behaved and possesses a root in Q, Algorithm 3.4 will converge to an equilibrium of the
model.
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Appendices

A Additional Proofs

Proof of Lemma 2.1

Proof. First, we follow the idea presented in Stokey et al. (1989b) to show that the
set of feasible strategies is nonempty. For any i ∈ I fix any initial condition si,0 =
(xi,0, zi,0). Assumption 2.1 ensures that Γ is compact-valued and continuous. Also, X and
Z are subsets of Euclidean spaces. Hence, Γ permits a measurable selection (see, e.g.,
Hildenbrand, 1974), meaning that there exists a measurable function h : S → X such that
∀st ∈ S : h(s) ∈ Γ(st; Qt). Now define a strategy ai as

ai,0 = h(si,0)

ai,t(zt) = h
(
ai,t−1(zt−1), zt

)
, zt ∈ Zt, t = 1, 2, . . .

Now, ai,0 is clearly measurable and since compositions of measurable functions are again
measurable, ai,t is also measurable for any t by induction. Hence, ai is a feasible strategy
as in Definition 2.4. In particular, for all i ∈ I the set of feasible strategies is non-empty.

Next, consider the optimization problem

sup
ai∈ℵi(si,0;Q)

R(xi,0, ai,0(zi,0), zi,0) + E0

{ ∞∑
t=1

βtR(ai,t−1(zt−1
i ), ai,t(zt

i), zi,t)
}

.

Since R is bounded, the supremum exists and will be attained for some a∗ = limk→∞ ak

with {ak}∞
k=1 ∈ ℵ(s0; Q). And since the constraint Γ is compact-valued and continuous,

a∗ = limk→∞ ak ∈ ℵ(s0; Q). Hence, a∗ is feasible and thus an optimal strategy.

Proof of Lemma 2.4

Proof. The proof follows Acemoglu and Jensen (2015) and uses the results by Topkis
(1978, 1998) on optimization with lattices and supermodular functions.

Fist, note that v∗(x, z) can be obtained by iterating on the value function as in
Equation 3.1. Since supermodularity is preserved by integration (and hence by taking the
expectation with respect to the transition function of z), v∗(x, z) will be supermodular in
x if R(x, y, z) is supermodular in (x, y) and Γ(·, z) is a sub-lattice of X × X.
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Now, remember that the policy correspondence is defined as

G(x, z) =
{

y ∈ Γ(x, z) :

v∗(x, z) = R(x, y, z) + βE
[
v∗(y, z′)

]}

= arg sup
y∈Γ(x,z)

R(x, y, z) + βE
[
v∗(y, z′)

]
,

and the result immediately follows from Topkis’s theorem, since R(x, y, z) + βE
[
v∗(y, z′)

]
is again supermodular.

Proof of Lemma 2.5

Proof. We look at (P(X), ⪰) with ⪰ being the first-order stochastic dominance order and
show that for two measures µ2 ⪰ µ1 we have T ∗

gi,Q
µ2 ⪰ T ∗

gi,Q
µ1. This holds if and only if

for every increasing function f : X → R we have:
∫

f(x)T ∗
gi,Q

µ2(dx) ≥
∫

f(x)T ∗
gi,Q

µ1(dx) (A7)

Remember that
T ∗

gi,Q
µ =

∫
Pgi,Q(x, ·)µ(dx),

and
Pgi,Q(x, A) ≡ µz({z ∈ Z | gi(x, z; Q) ∈ A}),

with µz the invariant distribution over z and gi the selection from the optimal policy
correspondence. Hence, Equation A7 is equivalent to

∫ [ ∫
f(gi(x, z; Q))µ2(dx)

]
µz(dz) ≥

∫ [ ∫
f(gi(x, z; Q))µ1(dx)

]
µz(dz). (A8)

Now, with Lemma 2.4 we have that f ◦ gi is an increasing function in x and Equation A8
will always hold whenever µ2 ⪰ µ1.

Proof of Lemma 4.2
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Proof. With the triangular inequality we get

∥vn − vn+m∥ ≤
m∑

i=1
∥vn+i−1 − vn+i∥

≤
m∑

i=1
βn+i−1∥v0 − v1∥

= βn∥v0 − v1∥
m−1∑
i=1

βi

≤ βn∥v0 − v1∥
∞∑

i=1
βi = βn∥v0 − v1∥

1
1 − β

With m → ∞, we get ∥vn − v∥ ≤ βn(1 − β)−1∥v0 − v1∥. And finally, we can look at a new
sequence ṽ0 = vn−1, ṽ1 = vn and get

∥vn − v∥ = ∥ṽ1 − v∥ ≤ β(1 − β)−1∥ṽ0 − ṽ1∥

= β(1 − β)−1∥vn−1 − vn∥

= β(1 − β)−1ε.

B Additional Theorems

Theorem B11 (Theorem 1 in Hopenhayn and Prescott, 1992). Let Λ be a compact subset
of P(S) and T : Λ → Λ an increasing map. Then, T has a fixed point if and only if there
exists a measure µa ∈ Λ such that Tµa ⪰ µa.

Proof. See Hopenhayn and Prescott (1992).

Theorem B12 (Blackwell’s sufficient conditions for a contraction). Let X ⊆ Rl, and
let B(X) be the space of bounded functions f : X → R, with the supremum norm. Let
T : B(X) → B(X) be an operator satisfying

(i). Monotonicity: For all f, g ∈ B(X), if f(x) ≤ g(x) for all x ∈ X, then (Tf)(x) ≤
(Tg)(x) for all x ∈ X.

(ii). Discounting: ∃β ∈ (0, 1) : ∀f ∈ B(X), a ∈ R+, x ∈ X:
[
T (f + a)(x)

]
≤ (Tf)(x) + βa,

Then T is a contraction mapping with modulus β.
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Proof. For all f, g ∈ B(X), with f ≤ g, we have f ≤ g + ∥f − g∥. With properties (i) and
(ii) we get

Tf ≤ T
(

f ≤ g + ∥f − g∥
)

≤ Tg + β∥f − g∥

By applying the same logic for g ≤ f , we get

Tg ≤ Tf + β∥f − g∥,

and combining the two inequalities we get

∥Tf − Tg∥ ≤ β∥f − g∥

Theorem B13 (Theorem of the Maximum). Let X ⊆ Rl, Y ⊆ Rm, and Z ⊆ Rk,
f : X × Y × Z → R a continuous function, and Γ : X × Z → Y a compact-valued and
continuous correspondence. Then the value function v : X×Z → R defined in Equation 2.10
is continuous, and the correspondence G : X × Z → R defined in Equation 2.11 is non-
empty, compact-valued and upper hemicontinuous.

Proof. For a proof see Stokey et al. (1989a).

Theorem B14 (Contraction Mapping Theorem). If (S, ρ) is a complete metric space and
T : S → S is a contraction mapping with modulus β, then

(i). T has exactly one fixed point v ∈ S

(ii). For any v0 ∈ S, ρ(T nv0, v) ≤ βnρ(v0, v), n = 1, 2, . . .

Proof. For a proof see, for example, Stokey et al. (1989a).

Theorem B15 (Kakutani-Glicksberg-Fan Fixed-Point Theorem). Let S be a non-empty,
compact and convex subset of a Hausdorff locally convex topological vector space. If
Φ : S → 2S is upper hemicontinuous and Φ(s) is non-empty, compact and convex for all
s ∈ S, then Φ has a fixed point.

Proof. See the works by Kakutani (1941), Glicksberg (1952) and Fan (1952).

C Parameterization for Model in Section 2.1

To produce the graphs in Figure 1, the model is solved numerically in MATLAB 2021b by
using value function iteration on a discretized state space. It is assumed that the logarithm
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of the labor supply shock follows an AR(1) process:

log(ht+1) = ρ log(ht) + εt

with εt ∼ N(0, σ2
ε). This process is approximated by a seven-state Markov chain using the

procedure in Tauchen (1986).
Preferences of households are given by a utility function with constant relative risk-

aversion:
u(c) = c1−σ

1 − σ

The final good is produced using a Cobb-Douglas production function:

Y = KαL1−α,

with the capital share α chosen to be 0.36 and capital depreciates at rate δ = 0.04.
A summary of the parameter values is given in Table C1.

Table C1: Parameterization

Parameter Value
Risk aversion σ 2
Discount factor β 0.96
Capital Share in Production α 0.36
Depreciation rate δ 0.04
Autocorr. labor endowment ρ 0.9
White noise std. dev. σε 0.4
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